
10

Probabilistic primality testing

In this chapter, we discuss some simple and efficient probabilistic tests for
primality.

10.1 Trial division

Suppose we are given an integer n > 1, and we want to determine whether n
is prime or composite. The simplest algorithm to describe and to program
is trial division. We simply divide n by 2, 3, and so on, testing if any of
these numbers evenly divide n. Of course, we don’t need to go any further
than

√
n, since if n has any non-trivial factors, it must have one that is no

greater than
√
n (see Exercise 1.1). Not only does this algorithm determine

whether n is prime or composite, it also produces a non-trivial factor of n
in case n is composite.

Of course, the drawback of this algorithm is that it is terribly inefficient:
it requires Θ(

√
n) arithmetic operations, which is exponential in the binary

length of n. Thus, for practical purposes, this algorithm is limited to quite
small n. Suppose, for example, that n has 100 decimal digits, and that a
computer can perform 1 billion divisions per second (this is much faster than
any computer existing today). Then it would take on the order of 1033 years
to perform

√
n divisions.

In this chapter, we discuss a much faster primality test that allows 100
decimal digit numbers to be tested for primality in less than a second. Unlike
the above test, however, this test does not find a factor of n when n is
composite. Moreover, the algorithm is probabilistic, and may in fact make
a mistake. However, the probability that it makes a mistake can be made
so small as to be irrelevant for all practical purposes. Indeed, we can easily
make the probability of error as small as 2−100 — should one really care
about an event that happens with such a miniscule probability?

244

10.2 The structure of Z∗
n 245

10.2 The structure of Z∗n
Before going any further, we have to have a firm understanding of the group
Z∗n, for integer n > 1. As we know, Z∗n consists of those elements [a]n ∈ Zn

such that a is an integer relatively prime to n. Suppose n = pe1
1 · · · per

r is the
factorization of n into primes. By the Chinese remainder theorem, we have
the ring isomorphism

Zn
∼= Zp

e1
1
× · · · × Zper

r

which induces a group isomorphism

Z∗n ∼= Z∗
p

e1
1
× · · · × Z∗per

r
.

Thus, to determine the structure of the group Z∗n for general n, it suffices
to determine the structure for n = pe, where p is prime. By Theorem 2.13,
we already know the order of the group Z∗pe , namely, φ(pe) = pe−1(p− 1).

The main result of this section is the following:

Theorem 10.1. If p is an odd prime, then for any positive integer e, the
group Z∗pe is cyclic. The group Z∗2e is cyclic for e = 1 or 2, but not for e ≥ 3.
For e ≥ 3, Z∗2e is isomorphic to the additive group Z2 × Z2e−2.

In the case where e = 1, this theorem is a special case of Theorem 9.16,
which we proved in §9.2.3. Note that for e > 1, the ring Zpe is not a field,
and so Theorem 9.16 cannot be used directly. To deal with the case e > 1,
we need a few simple facts.

Theorem 10.2. Let p be a prime. For integer e ≥ 1, if a ≡ b (mod pe),
then ap ≡ bp (mod pe+1).

Proof. We have a = b+ cpe for some c ∈ Z. Thus, ap = bp + pbp−1cpe + dp2e

for an integer d. It follows that ap ≡ bp (mod pe+1). 2

Theorem 10.3. Let p be a prime. Let e ≥ 1 be an integer and assume
pe > 2. If a ≡ 1 + pe (mod pe+1), then ap ≡ 1 + pe+1 (mod pe+2).

Proof. By Theorem 10.2, ap ≡ (1 + pe)p (mod pe+2). Expanding (1 + pe)p,
we have

(1 + pe)p = 1 + p · pe +
p−1∑
k=2

(
p

k

)
pek + pep.

By Exercise 1.12, all of the terms in the sum on k are divisible by p1+2e, and
1 + 2e ≥ e + 2 for all e ≥ 1. For the term pep, the assumption that pe > 2
means that either p ≥ 3 or e ≥ 2, which implies ep ≥ e+ 2. 2

246 Probabilistic primality testing

Now consider Theorem 10.1 in the case where p is odd. As we already
know that Z∗p is cyclic, assume e > 1. Let x ∈ Z be chosen so that [x]p
generates Z∗p. Suppose the multiplicative order of [x]pe ∈ Z∗pe is m. Then
as xm ≡ 1 (mod pe) implies xm ≡ 1 (mod p), it must be the case that
p − 1 divides m, and so [xm/(p−1)]pe has multiplicative order exactly p − 1.
By Theorem 8.38, if we find an integer y such that [y]pe has multiplicative
order pe−1, then [xm/(p−1)y]pe has multiplicative order (p − 1)pe−1, and we
are done. We claim that y := 1 + p does the job. Any integer between 0
and pe − 1 can be expressed as an e-digit number in base p; for example,
y = (0 · · · 0 1 1)p. If we compute successive pth powers of y modulo pe, then
by Theorem 10.3 we have

y mod pe = (0 · · · 0 1 1)p,

yp mod pe = (∗ · · · ∗ 1 0 1)p,

yp2
mod pe = (∗ · · · ∗ 1 0 0 1)p,

...
ype−2

mod pe = (1 0 · · · 0 1)p,

ype−1
mod pe = (0 · · · 0 1)p.

Here, “∗” indicates an arbitrary digit. From this table of values, it is clear
(see Theorem 8.37) that [y]pe has multiplicative order pe−1. That proves
Theorem 10.1 for odd p.

We now prove Theorem 10.1 in the case p = 2. For e = 1 and e = 2, the
theorem is easily verified. Suppose e ≥ 3. Consider the subgroup G ⊆ Z∗2e

generated by [5]2e . Expressing integers between 0 and 2e−1 as e-digit binary
numbers, and applying Theorem 10.3, we have

5 mod 2e = (0 · · · 0 1 0 1)2,

52 mod 2e = (∗ · · · ∗ 1 0 0 1)2,
...

52e−3
mod 2e = (1 0 · · · 0 1)2,

52e−2
mod 2e = (0 · · · 0 1)2.

So it is clear (see Theorem 8.37) that [5]2e has multiplicative order 2e−2.
We claim that [−1]2e /∈ G. If it were, then since it has multiplicative order
2, and since any cyclic group of even order has precisely one element of
order 2 (see Theorem 8.31), it must be equal to [52e−3

]2e ; however, it is clear
from the above calculation that 52e−3 6≡ −1 (mod 2e). Let H ⊆ Z∗2e be the
subgroup generated by [−1]2e . Then from the above, G ∩H = {[1]2e}, and
hence by Theorem 8.28, G×H is isomorphic to the subgroup G ·H of Z∗2e .

10.3 The Miller–Rabin test 247

But since the orders of G×H and Z∗2e are equal, we must have G ·H = Z∗2e .
That proves the theorem.

Exercise 10.1. Show that if n is a positive integer, the group Z∗n is cyclic
if and only if

n = 1, 2, 4, pe, or 2pe,

where p is an odd prime and e is a positive integer.

Exercise 10.2. Let n = pq, where p and q are distinct primes such that
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are themselves prime. Show
that the subgroup (Z∗n)2 of squares is a cyclic group of order p′q′.

Exercise 10.3. Let n = pq, where p and q are distinct primes such that
p - (q − 1) and q - (p− 1).

(a) Show that the map that sends [a]n ∈ Z∗n to [an]n2 ∈ (Z∗n2)n is a group
isomorphism.

(b) Consider the element α := [1 + n]n2 ∈ Z∗n2 ; show that for any non-
negative integer k, αk = [1 + kn]n2 , and conclude that α has multi-
plicative order n.

(c) Show that the map from Zn × Z∗n to Z∗n2 that sends ([k]n, [a]n) to
[(1 + kn)an]n2 is a group isomorphism.

10.3 The Miller–Rabin test

We describe in this section a fast (polynomial time) test for primality, known
as the Miller–Rabin test. The algorithm, however, is probabilistic, and
may (with small probability) make a mistake.

We assume for the remainder of this section that the number n we are
testing for primality is an odd integer greater than 1.

Several probabilistic primality tests, including the Miller–Rabin test, have
the following general structure. Define Z+

n to be the set of non-zero elements
of Zn; thus, |Z+

n | = n− 1, and if n is prime, Z+
n = Z∗n. Suppose also that we

define a set Ln ⊆ Z+
n such that:

• there is an efficient algorithm that on input n and α ∈ Z+
n , determines

if α ∈ Ln;

• if n is prime, then Ln = Z∗n;

• if n is composite, |Ln| ≤ c(n− 1) for some constant c < 1.

248 Probabilistic primality testing

To test n for primality, we set an “error parameter” t, and choose random
elements α1, . . . , αt ∈ Z+

n . If αi ∈ Ln for all i = 1, . . . , t, then we output
true; otherwise, we output false.

It is easy to see that if n is prime, this algorithm always outputs true, and
if n is composite this algorithm outputs true with probability at most ct. If
c = 1/2 and t is chosen large enough, say t = 100, then the probability that
the output is wrong is so small that for all practical purposes, it is “just as
good as zero.”

We now make a first attempt at defining a suitable set Ln. Let us define

Ln := {α ∈ Z+
n : αn−1 = 1}.

Note that Ln ⊆ Z∗n, since if αn−1 = 1, then α has a multiplicative inverse,
namely, αn−2. Using a repeated-squaring algorithm, we can test if α ∈ Ln

in time O(len(n)3).

Theorem 10.4. If n is prime, then Ln = Z∗n. If n is composite and Ln (
Z∗n, then |Ln| ≤ (n− 1)/2.

Proof. Note that Ln is the kernel of the (n−1)-power map on Z∗n, and hence
is a subgroup of Z∗n.

If n is prime, then we know that Z∗n is a group of order n− 1. Since the
order of a group element divides the order of the group, we have αn−1 = 1
for all α ∈ Z∗n. That is, Ln = Z∗n.

Suppose that n is composite and Ln (Z∗n. Since the order of a subgroup
divides the order of the group, we have |Z∗n| = m|Ln| for some integer m > 1.
From this, we conclude that

|Ln| =
1
m
|Z∗n| ≤

1
2
|Z∗n| ≤

n− 1
2

. 2

Unfortunately, there are odd composite numbers n such that Ln = Z∗n.
Such numbers are called Carmichael numbers. The smallest Carmichael
number is

561 = 3 · 11 · 17.

Carmichael numbers are extremely rare, but it is known that there are in-
finitely many of them, so we can not ignore them. The following theorem
puts some constraints on Carmichael numbers.

Theorem 10.5. A Carmichael number n is of the form n = p1 · · · pr, where
the pi are distinct primes, r ≥ 3, and (pi − 1) | (n− 1) for i = 1, . . . , r.

10.3 The Miller–Rabin test 249

Proof. Let n = pe1
1 · · · per

r be a Carmichael number. By the Chinese remain-
der theorem, we have an isomorphism of Z∗n with the group

Z∗
p

e1
1
× · · · × Z∗per

r
,

and we know that each group Z∗
p

ei
i

is cyclic of order pei−1
i (pi − 1). Thus,

the power n− 1 kills the group Z∗n if and only if it kills all the groups Z∗
p

ei
i

,

which happens if and only if pei−1
i (pi − 1) | (n− 1). Now, on the one hand,

n ≡ 0 (mod pi). On the other hand, if ei > 1, we would have n ≡ 1 (mod pi),
which is clearly impossible. Thus, we must have ei = 1.

It remains to show that r ≥ 3. Suppose r = 2, so that n = p1p2. We have

n− 1 = p1p2 − 1 = (p1 − 1)p2 + (p2 − 1).

Since (p1 − 1) | (n − 1), we must have (p1 − 1) | (p2 − 1). By a symmetric
argument, (p2 − 1) | (p1 − 1). Hence, p1 = p2, a contradiction. 2

To obtain a good primality test, we need to define a different set L′n, which
we do as follows. Let n − 1 = 2hm, where m is odd (and h ≥ 1 since n is
assumed odd), and define

L′n := {α ∈ Z+
n : αm2h

= 1 and
for j = 0, . . . , h− 1, αm2j+1

= 1 implies αm2j
= ±1}.

The Miller–Rabin test uses this set L′n, in place of the set Ln defined
above. It is clear from the definition that L′n ⊆ Ln.

Testing whether a given α ∈ Z+
n belongs to L′n can be done using the

following procedure:

β ← αm

if β = 1 then return true
for j ← 0 to h− 1 do

if β = −1 then return true
if β = +1 then return false
β ← β2

return false

It is clear that using a repeated-squaring algorithm, this procedure runs
in time O(len(n)3). We leave it to the reader to verify that this procedure
correctly determines membership in L′n.

Theorem 10.6. If n is prime, then L′n = Z∗n. If n is composite, then
|L′n| ≤ (n− 1)/4.

250 Probabilistic primality testing

The rest of this section is devoted to a proof of this theorem. Let n− 1 =
m2h, where m is odd.

Case 1: n is prime. Let α ∈ Z∗n. Since Z∗n is a group of order n − 1,
and the order of a group element divides the order of the group, we know
that αm2h

= αn−1 = 1. Now consider any index j = 0, . . . , h − 1 such that
αm2j+1

= 1, and consider the value β := αm2j
. Then since β2 = αm2j+1

= 1,
the only possible choices for β are ±1—this is because Z∗n is cyclic of even
order and so there are exactly two elements of Z∗n whose multiplicative order
divides 2, namely ±1. So we have shown that α ∈ L′n.

Case 2: n = pe, where p is prime and e > 1. Certainly, L′n is contained
in the kernel K of the (n − 1)-power map on Z∗n. By Theorem 8.31, |K| =
gcd(φ(n), n− 1). Since n = pe, we have φ(n) = pe−1(p− 1), and so

|L′n| ≤ |K| = gcd(pe−1(p− 1), pe − 1) = p− 1 =
pe − 1

pe−1 + · · ·+ 1
≤ n− 1

4
.

Case 3: n = pe1
1 · · · per

r is the prime factorization of n, and r > 1. For
i = 1, . . . , r, let Ri denote the ring Zp

ei
i

, and let

θ : R1 × · · · ×Rr → Zn

be the ring isomorphism provided by the Chinese remainder theorem.
Also, let φ(pei

i) = mi2hi , with mi odd, for i = 1, . . . , r, and let ` :=
min{h, h1, . . . , hr}. Note that ` ≥ 1, and that each R∗i is a cyclic group
of order mi2hi .

We first claim that for any α ∈ L′n, we have αm2`
= 1. To prove this,

first note that if ` = h, then by definition, αm2`
= 1, so suppose that ` < h.

By way of contradiction, suppose that αm2` 6= 1, and let j be the largest
index in the range `, . . . , h − 1 such that αm2j+1

= 1. By the definition
of L′n, we must have αm2j

= −1. Since ` < h, we must have ` = hi for
some particular index i = 1, . . . , r. Writing α = θ(α1, . . . , αr), we have
αm2j

i = −1. This implies that the multiplicative order of αm
i is equal to

2j+1 (see Theorem 8.37). However, since j ≥ ` = hi, this contradicts the
fact that the order of a group element (in this case, αm

i) must divide the
order of the group (in this case, R∗i).

From the claim in the previous paragraph, and the definition of L′n, it
follows that α ∈ L′n implies αm2`−1

= ±1. We now consider an experiment in
which α is chosen at random from Z∗n (that is, with a uniform distribution),
and show that P[αm2`−1

= ±1] ≤ 1/4, from which the theorem will follow.
Write α = θ(α1, . . . , αr). As α is uniformly distributed over Z∗n, each αi is

uniformly distributed over R∗i , and the collection of all the αi is a mutually
independent collection of random variables.

10.3 The Miller–Rabin test 251

For i = 1, . . . , r and j = 0, . . . , h, let Gi(j) denote the image of the (m2j)-
power map on R∗i . By Theorem 8.31, we have

|Gi(j)| =
mi2hi

gcd(mi2hi ,m2j)
.

Because ` ≤ h and ` ≤ hi, a simple calculation shows that

|Gi(h)| divides |Gi(`)| and 2|Gi(`)| = |Gi(`− 1)|.

In particular, |Gi(` − 1)| is even and is no smaller than 2|Gi(h)|. The fact
that |Gi(`− 1)| is even implies that −1 ∈ Gi(`− 1).

The event αm2`−1
= ±1 occurs if and only if either

(E1) αm2`−1

i = 1 for i = 1, . . . , r, or

(E2) αm2`−1

i = −1 for i = 1, . . . , r.

Since the events E1 and E2 are disjoint, and since the values αm2`−1

i are
mutually independent, with each value αm2`−1

i uniformly distributed over
Gi(` − 1) (see part (a) of Exercise 8.22), and since Gi(` − 1) contains ±1,
we have

P[αm2`−1
= ±1] = P[E1] + P[E2] = 2

r∏
i=1

1
|Gi(`− 1)|

,

and since |Gi(`− 1)| ≥ 2|Gi(h)|, we have

P[αm2`−1
= ±1] ≤ 2−r+1

r∏
i=1

1
|Gi(h)|

. (10.1)

If r ≥ 3, then (10.1) directly implies that P[αm2`−1
= ±1] ≤ 1/4, and we

are done. So suppose that r = 2. In this case, Theorem 10.5 implies that
n is not a Carmichael number, which implies that for some i = 1, . . . , r, we
must have Gi(h) 6= {1}, and so |Gi(h)| ≥ 2, and (10.1) again implies that
P[αm2`−1

= ±1] ≤ 1/4.

That completes the proof of Theorem 10.6.

Exercise 10.4. Show that an integer n > 1 is prime if and only if there
exists an element in Z∗n of multiplicative order n− 1.

Exercise 10.5. Let p be a prime. Show that n := 2p+ 1 is a prime if and
only if 2n−1 ≡ 1 (mod n).

252 Probabilistic primality testing

Exercise 10.6. Here is another primality test that takes as input an odd
integer n > 1, and a positive integer parameter t. The algorithm chooses
α1, . . . , αt ∈ Z+

n at random, and computes

βi := α
(n−1)/2
i (i = 1, . . . , t).

If (β1, . . . , βt) is of the form (±1,±1, . . . ,±1), but is not equal to (1, 1, . . . , 1),
the algorithm outputs true; otherwise, the algorithm outputs false. Show
that if n is prime, then the algorithm outputs false with probability at most
2−t, and if n is composite, the algorithm outputs true with probability at
most 2−t.

In the terminology of §7.2, the algorithm in the above exercise is an exam-
ple of an “Atlantic City” algorithm for the language of prime numbers (or
equivalently, the language of composite numbers), while the Miller–Rabin
test is an example of a “Monte Carlo” algorithm for the language of com-
posite numbers.

10.4 Generating random primes using the Miller–Rabin test

The Miller–Rabin test is the most practical algorithm known for testing
primality, and because of this, it is widely used in many applications, espe-
cially cryptographic applications where one needs to generate large, random
primes (as we saw in §7.8). In this section, we discuss how one uses the
Miller–Rabin test in several practically relevant scenarios where one must
generate large primes.

10.4.1 Generating a random prime between 2 and M

Suppose one is given an integer M ≥ 2, and wants to generate a random
prime between 2 and M . We can do this by simply picking numbers at
random until one of them passes a primality test. We discussed this problem
in some detail in §7.5, where we assumed that we had a primality test
IsPrime. The reader should review §7.5, and §7.5.1 in particular. In this
section, we discuss aspects of this problem that are specific to the situation
where the Miller–Rabin test is used to implement IsPrime.

To be more precise, let us define the following algorithm MR(n, t), which
takes as input integers n and t, with n > 1 and t ≥ 1, and runs as follows:

10.4 Generating random primes using the Miller–Rabin test 253

Algorithm MR(n, t):

if n = 2 then return true
if n is even then return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

So we shall implement IsPrime(·) as MR(·, t), where t is an auxiliary
parameter. By Theorem 10.6, if n is prime, the output of MR(n, t) is always
true, while if n is composite, the output is true with probability at most 4−t.
Thus, this implementation of IsPrime satisfies the assumptions in §7.5.1,
with ε = 4−t.

Let γ(M, t) be the probability that the output of Algorithm RP in §7.5—
using this implementation of IsPrime —is composite. Then as we discussed
in §7.5.1,

γ(M, t) ≤ 4−tM − 1
π(M)

= O(4−tk), (10.2)

where k = len(M). Furthermore, if the output of Algorithm RP is prime,
then every prime is equally likely; that is, conditioning on the event that
the output is prime, the conditional output distribution is uniform over all
primes.

Let us now consider the expected running time of Algorithm RP. As was
shown in §7.5.1, this is O(kW ′M), where W ′M is the expected running time
of IsPrime where the average is taken with respect to the random choice of
input n ∈ {2, . . . ,M} and the random choices of the primality test itself.
Clearly, we have W ′M = O(tk3), since MR(n, t) executes at most t iterations
of the Miller–Rabin test, and each such test takes time O(k3). This leads to
an expected total running time bound of O(tk4). However, this estimate for
W ′M is overly pessimistic. Intuitively, this is because when n is composite, we
expect to perform very few Miller–Rabin tests—only when n is prime do we
actually perform all t of them. To make a rigorous argument, consider the
experiment in which n is chosen at random from {2, . . . ,M}, and MR(n, t)
is executed. Let Y be the number of times the basic Miller–Rabin test is
actually executed. Conditioned on any fixed, odd, prime value of n, the
value of Y is always t. Conditioned on any fixed, odd, composite value of
n, the distribution of Y is geometric with an associated success probability
of at least 3/4; thus, the conditional expectation of Y is at most 4/3 in this

254 Probabilistic primality testing

case. Thus, we have

E[Y] = E[Y | n prime]P[n prime] + E[Y | n composite]P[n composite]

≤ tπ(M)/(M − 1) + 4/3.

Thus, E[Y] ≤ 4/3 + O(t/k), from which it follows that W ′M = O(k3 + tk2),
and hence the expected total running time of Algorithm RP is actually
O(k4 + tk3).

Note that the above estimate (10.2) for γ(M, t) is actually quite pes-
simistic. This is because the error probability 4−t is a worst-case estimate;
in fact, for “most” composite integers n, the probability that MR(n, t) out-
puts true is much smaller than this. In fact, γ(M, 1) is very small for large
M . For example, the following is known:

Theorem 10.7. We have

γ(M, 1) ≤ exp[−(1 + o(1)) log(M) log(log(log(M)))/ log(log(M))].

Proof. Literature—see §10.7. 2

The bound in the above theorem goes to zero quite quickly—faster than
(logM)−c for any positive constant c. While the above theorem is asymp-
totically very good, in practice, one needs explicit bounds. For example, the
following lower bounds for − log2(γ(2k, 1)) are known:

k 200 300 400 500 600
3 19 37 55 74

Given an upper bound on γ(M, 1), we can bound γ(M, t) for t ≥ 2 using
the following inequality:

γ(M, t) ≤ γ(M, 1)
1− γ(M, 1)

4−t+1. (10.3)

To prove (10.3), it is not hard to see that on input M , the output distribution
of Algorithm RP is the same as that of the following algorithm:

repeat
repeat

n←R {2, . . . ,M}
until MR(n, 1)
n1 ← n

until MR(n1, t− 1)
output n1

10.4 Generating random primes using the Miller–Rabin test 255

Consider for a moment a single execution of the outer loop of the above
algorithm. Let β be the probability that n1 is composite, and let α be the
conditional probability that MR(n1, t − 1) outputs true, given that n1 is
composite. Evidently, β = γ(M, 1) and α ≤ 4−t+1.

Now, using exactly the same reasoning as was used to derive equation
(7.2) in §7.5.1, we find that

γ(M, t) =
αβ

αβ + (1− β)
≤ αβ

1− β
≤ 4−t+1γ(M, 1)

1− γ(M, 1)
,

which proves (10.3).

Given that γ(M, 1) is so small, for large M , Algorithm RP actually
exhibits the following behavior in practice: it generates a random value
n ∈ {2, . . . ,M}; if n is odd and composite, then the very first iteration of
the Miller–Rabin test will detect this with overwhelming probability, and no
more iterations of the test are performed on this n; otherwise, if n is prime,
the algorithm will perform t − 1 more iterations of the Miller–Rabin test,
“just to make sure.”

Exercise 10.7. Consider the problem of generating a random Sophie Ger-
main prime between 2 and M (see §5.5.5). One algorithm to do this is as
follows:

repeat
n←R {2, . . . ,M}
if MR(n, t) then

if MR(2n+ 1, t) then
output n and halt

forever

Assuming Conjecture 5.26, show that this algorithm runs in expected time
O(k5 + tk4), and outputs a number that is not a Sophie Germain prime with
probability O(4−tk2). As usual, k := len(M).

Exercise 10.8. Improve the algorithm in the previous exercise, so that un-
der the same assumptions, it runs in expected time O(k5 +tk3), and outputs
a number that is not a Sophie Germain prime with probability O(4−tk2),
or even better, show that this probability is at most γ(M, t)π∗(M)/π(M) =
O(γ(M, t)k), where π∗(M) is defined as in §5.5.5.

Exercise 10.9. Suppose in Algorithm RFN in §7.7 we implement algorithm
IsPrime(·) as MR(·, t), where t is a parameter satisfying 4−t(2 + logM) ≤

256 Probabilistic primality testing

1/2, if M is the input to RFN. Show that the expected running time of
Algorithm RFN in this case is O(k5 + tk4 len(k)). Hint: use Exercise 7.20.

10.4.2 Trial division up to a small bound

In generating a random prime, most candidates n will in fact be composite,
and so it makes sense to cast these out as quickly as possible. Significant
efficiency gains can be achieved by testing if a given candidate n is divisible
by any small primes up to a given bound s, before we subject n to a Miller–
Rabin test. This strategy makes sense, since for a small, “single precision”
prime p, we can test if p | n essentially in time O(len(n)), while a single
iteration of the Miller–Rabin test takes time O(len(n)3) steps.

To be more precise, let us define the following algorithm MRS (n, t, s),
which takes as input integers n, t, and s, with n > 1, t ≥ 1, and s > 1:

Algorithm MRS (n, t, s):

for each prime p ≤ s do
if p | n then

if p = n then return true else return false

repeat t times
α←R {1, . . . , n− 1}
if α 6∈ L′n return false

return true

In an implementation of the above algorithm, one would most likely use
the sieve of Eratosthenes (see §5.4) to generate the small primes.

Note that MRS (n, t, 2) is equivalent to MR(n, t). Also, it is clear that the
probability that MRS (n, t, s) makes a mistake is no more than the prob-
ability that MR(n, t) makes a mistake. Therefore, using MRS in place of
MR will not increase the probability that the output of Algorithm RP is a
composite—indeed, it is likely that this probability decreases significantly.

Let us now analyze the impact on the running time. To do this, we need
to estimate the probability τ(M, s) that a randomly chosen number between
2 and M is not divisible by any primes up to s. If M is sufficiently large
with respect to s, the following heuristic argument can be made rigorous,
as we will discuss below. The probability that a random number is divisible
by a prime p is about 1/p, so the probability that it is not divisible by p is
about 1 − 1/p. Assuming that these events are essentially independent for

10.4 Generating random primes using the Miller–Rabin test 257

different values of p (this is the heuristic part), we estimate

τ(M, s) ≈
∏
p≤s

(1− 1/p) ∼ B1/ log s,

where B1 ≈ 0.56146 is the constant from Exercise 5.14 (see also Theo-
rem 5.21).

Of course, performing the trial division takes some time, so let us also
estimate the expected number κ(M, s) of trial divisions performed. If
p1, p2, . . . , pr are the primes up to s, then for i = 1, . . . , r, the probabil-
ity that we perform at least i trial divisions is precisely τ(M,pi − 1). From
this, it follows (see Theorem 6.8) that

κ(M, s) =
∑
p≤s

τ(M,p− 1) ≈
∑
p≤s

B1/ log p.

Using Exercise 5.9 and the Prime number theorem, we obtain

κ(M, s) ≈
∑
p≤s

B1/ log p ∼ B1π(s)/ log s ∼ B1s/(log s)2.

If k = len(M), for a random n ∈ {2, . . . ,M}, the expected amount of
time spent within MRS (n, t, s) performing the Miller–Rabin test is now
easily seen to be O(k3/ len(s)+tk2). Further, assuming that each individual
trial division step takes time O(len(n)), the expected running time of trial
division up to s is O(ks/ len(s)2). This estimate does not take into account
the time to generate the small primes using the sieve of Eratosthenes. These
values might be pre-computed, in which case this time is zero, but even if we
compute them on the fly, this takes timeO(s len(len(s))), which is dominated
by O(ks/ len(s)2)) for any reasonable value of s (in particular, for s ≤ kO(1)).

So provided s = o(k2 len(k)), the running time of MRS will be dominated
by the Miller–Rabin test, which is what we want, of course — if we spend
as much time on trial division as the time it would take to perform a single
Miller–Rabin test, we might as well just perform the Miller–Rabin test. In
practice, one should use a very conservative bound for s, probably no more
than k2, since getting s arbitrarily close to optimal does not really provide
that much benefit, while if we choose s too large, it can actually do significant
harm.

From the above estimates, we can conclude that with k ≤ s ≤ k2, the
expected running time W ′M of MRS (n, t, s), with respect to a randomly
chosen n between 2 and M , is

W ′M = O(k3/ len(k) + tk2). (10.4)

258 Probabilistic primality testing

From this, it follows that the expected running time of Algorithm RP on
input M is O(k4/ len(k) + tk3). Thus, we effectively reduce the running
time by a factor proportional to len(k), which is a very real and noticeable
improvement in practice.

The reader may have noticed that in our analysis of MRS , we as-
sumed that computing n mod p for a “small” prime p takes time
O(len(n)). However, if we strictly followed the rules established in
Theorem 3.3, we should charge time O(len(n) len(p)) for this divi-
sion step. To answer this charge that we have somehow “cheated,”
we offer the following remarks.
First, in practice the primes p are so small that they surely will
fit into a single digit in the underlying representation of integers as
vectors of digits, and so estimating the cost as O(len(n)) rather than
O(len(n) len(p)) seems more realistic.
Second, even if one uses the bound O(len(n) len(p)), one can carry
out a similar analysis, obtaining the same result (namely, a speedup
by a factor proportional to len(k)) except that one should choose s
from a slightly smaller range (namely, s = o(k2)).

As we already mentioned, the above analysis is heuristic, but the results
are correct. We shall now discuss how this analysis can be made rigorous;
however, we should remark that any such rigorous analysis is mainly of the-
oretical interest only—in any practical implementation, the optimal choice
of the parameter s is best determined by experiment, with the analysis being
used only as a rough guide. Now, to make the analysis rigorous, we need
prove that the estimate τ(M, s) ≈

∏
p≤s(1 − 1/p) is sufficiently accurate.

Proving such estimates takes us into the realm of “sieve theory.” The larger
M is with respect to s, the easier it is to prove such estimates. We shall
prove only the simplest and most naive such estimate, but it is still good
enough for our purposes, if we do not care too much about hidden big-O
constants.

Before stating any results, let us restate the problem slightly. For real
y ≥ 0, let us call a positive integer “y-rough” if it is not divisible by any
prime p up to y. For real x ≥ 0, let us define R(x, y) to be the number
of y-rough integers up to x. Thus, since τ(M, s) is the probability that a
random integer between 2 and M is s-rough, and 1 is by definition s-rough,
we have τ(M, s) = (R(M, s)− 1)/(M − 1).

Theorem 10.8. For any real x ≥ 0 and y ≥ 0, we have∣∣∣∣R(x, y)− x
∏
p≤y

(1− 1/p)
∣∣∣∣ ≤ 2π(y).

Proof. To simplify the notation, we shall use the Möbius function µ (see

10.4 Generating random primes using the Miller–Rabin test 259

§2.6). Also, for a real number u, let us write u = buc + {u}, where 0 ≤
{u} < 1. Let P be the product of the primes up to the bound y.

Now, there are bxc positive integers up to x, and of these, for each prime
p dividing P , precisely bx/pc are divisible by p, for each pair p, p′ of distinct
primes dividing P , precisely bx/pp′c are divisible by pp′, and so on. By
inclusion/exclusion (see Exercise 6.3), we have

R(x, y) =
∑
d|P

µ(d)bx/dc =
∑
d|P

µ(d)(x/d)−
∑
d|P

µ(d){x/d}.

Moreover, ∑
d|P

µ(d)(x/d) = x
∑
d|P

µ(d)/d = x
∏
p≤y

(1− 1/p),

and ∣∣∣∣ ∑
d|P

µ(d){x/d}
∣∣∣∣ ≤∑

d|P

1 = 2π(y).

That proves the theorem. 2

This theorem only says something non-trivial when y is quite small. Nev-
ertheless, using Chebyshev’s theorem on the density of primes, along with
Mertens’ theorem, it is not hard to see that this theorem implies that
τ(M, s) = O(1/ log s) when s = O(logM log logM), which implies the esti-
mate (10.4) above. We leave the details as an exercise for the reader.

Exercise 10.10. Prove the claim made above that τ(M, s) = O(1/ log s)
when s = O(logM log logM). More precisely, show that there exist con-
stants c, d, and s0, such that for all M and d satisfying s0 ≤ s ≤
c logM log logM , we have τ(M, s) ≤ d/ log s. From this, derive the esti-
mate (10.4) above.

Exercise 10.11. Let f be a polynomial with integer coefficients. For real
x ≥ 0 and y ≥ 0, define Rf (x, y) to be the number of integers m up to x

such that f(m) is y-rough. For positive integer M , define ωf (M) to be the
number of integers m ∈ {0, . . . ,M −1} such that f(m) ≡ 0 (mod M). Show
that ∣∣∣∣Rf (x, y)− x

∏
p≤y

(1− ωf (p)/p)
∣∣∣∣ ≤ ∏

p≤y

(1 + ωf (p)).

Exercise 10.12. Consider again the problem of generating a random Sophie
Germain prime, as discussed in Exercises 10.7 and 10.8. A useful idea is to

260 Probabilistic primality testing

first test if either n or 2n+ 1 are divisible by any small primes up to some
bound s, before performing any more expensive tests. Using this idea, design
and analyze an algorithm that improves the running time of the algorithm
in Exercise 10.8 to O(k5/ len(k)2 + tk3)—under the same assumptions, and
achieving the same error probability bound as in that exercise. Hint: first
show that the previous exercise implies that the number of positive integers
m up to x such that both m and 2m+ 1 are y-rough is at most

x · 1
2

∏
2<p≤y

(1− 2/p) + 3π(y).

Exercise 10.13. Design an algorithm that takes as input a prime q and
a bound M , and outputs a random prime p between 2 and M such that
p ≡ 1 (mod q). Clearly, we need to assume that M is sufficiently large
with respect to q. Analyze your algorithm assuming Conjecture 5.24 (and
using the result of Exercise 5.22). State how large M must be with respect
to q, and under these assumptions, show that your algorithm runs in time
O(k4/ len(k)+tk3), and that its output is incorrect with probability O(4−tk).
As usual, k := len(M).

10.4.3 Generating a random k-bit prime

In some applications, we want to generate a random prime of fixed size—
a random 1024-bit prime, for example. More generally, let us consider the
following problem: given integer k ≥ 2, generate a random k-bit prime, that
is, a prime in the interval [2k−1, 2k).

Bertrand’s postulate (Theorem 5.7) implies that there exists a constant
c > 0 such that π(2k)− π(2k−1) ≥ c2k−1/k for all k ≥ 2.

Now let us modify Algorithm RP so that it takes as input integer k ≥ 2,
and repeatedly generates a random n in the interval {2k−1, . . . , 2k−1} until
IsPrime(n) returns true. Let us call this variant Algorithm RP′. Further,
let us implement IsPrime(·) as MR(·, t), for some auxiliary parameter t, and
define γ′(k, t) to be the probability that the output of Algorithm RP′—with
this implementation of IsPrime —is composite.

Then using exactly the same reasoning as above,

γ′(k, t) ≤ 4−t 2k−1

π(2k)− π(2k−1)
= O(4−tk).

As before, if the output of Algorithm RP′ is prime, then every k-bit prime
is equally likely, and the expected running time is O(k4 + tk3). By doing
some trial division as above, this can be reduced to O(k4/ len(k) + tk3).

10.5 Perfect power testing and prime power factoring 261

The function γ′(k, t) has been studied a good deal; for example, the fol-
lowing is known:

Theorem 10.9. For all k ≥ 2, we have

γ′(k, 1) ≤ k242−
√

k.

Proof. Literature—see §10.7. 2

Upper bounds for γ′(k, t) for specific values of k and t have been computed.
The following table lists some known lower bounds for − log2(γ′(k, t)) for
various values of k and t:

t\k 200 300 400 500 600
1 11 19 37 56 75
2 25 33 46 63 82
3 34 44 55 70 88
4 41 53 63 78 95
5 47 60 72 85 102

Using exactly the same reasoning as the derivation of (10.3), one sees that

γ′(k, t) ≤ γ′(k, 1)
1− γ′(k, 1)

4−t+1.

10.5 Perfect power testing and prime power factoring

Consider the following problem: we are given a integer n > 1, and want to
determine if n is a perfect power, which means that n = de for integers d
and e, both greater than 1. Certainly, if such d and e exist, then it must be
the case that 2e ≤ n, so we can try all possible candidate values of e, running
from 2 to blog2 nc. For each such candidate value of e, we can test if n = de

for some d as follows. Suppose n is a k-bit number, that is, 2k−1 ≤ n < 2k.
Then 2(k−1)/e ≤ n1/e < 2k/e. So any integer eth root of n must lie in the
set {u, . . . , v − 1}, where u := 2b(k−1)/ec and v := 2dk/ee. Using u and v as
starting values, we can perform a binary search:

262 Probabilistic primality testing

repeat
w ← b(u+ v)/2c
z ← we

if z = n then
declare than n = we is an a perfect eth power, and stop

else if z < n then
u← w + 1

else
v ← w

until u ≥ v
declare that n is not a perfect eth power

If n = de for some integer d, then the following invariant holds (verify):
at the beginning of each loop iteration, we have u ≤ d < v. Thus, if n is
a perfect eth power, this will be discovered. That proves the correctness of
the algorithm.

As to its running time, note that with each loop iteration, the length v−u
of the search interval decreases by a factor of at least 2 (verify). Therefore,
after t iterations the interval will be of length at most 2k/e+1/2t, so after
at most k/e + 2 iterations, the interval will be of length less than 1, and
hence of length zero, and the algorithm will halt. So the number of loop
iterations is O(k/e). The power we computed in each iteration is no more
than 2(k/e+1)e = 2k+e ≤ 22k, and hence can be computed in time O(k2) (see
Exercise 3.22). Hence the overall cost of testing if n is an eth power using
this algorithm is O(k3/e).

Trying all candidate values of e from 1 to blog2 nc yields an overall running
time for perfect power testing of O(

∑
e k

3/e), which is O(k3 len(k)). To find
the largest possible value of e for which n is an eth power, we should examine
the candidates from highest to lowest.

Using the above algorithm for perfect power testing and an efficient pri-
mality test, we can determine if an integer n is a prime power pe, and if so,
compute p and e: we find the largest positive integer e (possibly 1) such
that n = de for integer d, and test if d is a prime using an efficient primality
test.

10.6 Factoring and computing Euler’s phi function

In this section, we use some of the ideas developed to analyze the Miller–
Rabin test to prove that the problem of factoring n and the problem of
computing φ(n) are equivalent. By equivalent, we mean that given an effi-

10.6 Factoring and computing Euler’s phi function 263

cient algorithm to solve one problem, we can efficiently solve the other, and
vice versa.

Clearly, one direction is easy: if we can factor n into primes, so

n = pe1
1 · · · p

er
r , (10.5)

then we can simply compute φ(n) using the formula

φ(n) = pe1−1
1 (p1 − 1) · · · per−1

r (pr − 1).

For the other direction, first consider the special case where n = pq, for
distinct primes p and q. Suppose we are given n and φ(n), so that we have
two equations in the unknowns p and q:

n = pq and φ(n) = (p− 1)(q − 1).

Substituting n/p for q in the second equation, and simplifying, we obtain

p2 + (φ(n)− n− 1)p+ n,

which can be solved using the quadratic formula.

For the general case, it is just as easy to prove a stronger result: given
any non-zero multiple of the exponent of Z∗n, we can efficiently factor n. In
particular, this will show that we can efficiently factor Carmichael numbers.

Before stating the algorithm in its full generality, we can convey the main
idea by considering the special case where n = pq, where p and q are distinct
primes, with p ≡ q ≡ 3 (mod 4). Suppose we are given such an n, along
with f 6= 0 that is a common multiple of p − 1 and q − 1. The algorithm
works as follows: let f = 2hm, where m is odd; choose a random, non-zero
element α of Zn; test if either gcd(rep(α), n) or gcd(rep(αm) + 1, n) splits n
(recall that rep(α) denotes the canonical representative of α).

The assumption that p ≡ 3 (mod 4) means that (p−1)/2 is an odd integer,
and since f is a multiple of p− 1, it follows that gcd(m, p− 1) = (p− 1)/2,
and hence the image of Z∗p under the m-power map is the subgroup of Z∗p of
order 2, which is {±1}. Likewise, the image of Z∗q under the m-power map
is {±1}. Let θ : Zp × Zq → Zn be the ring isomorphism from the Chinese
remainder theorem. Now, if α in the above algorithm does not lie in Z∗n,
then certainly gcd(rep(α), n) splits n. Otherwise, condition on the event
that α ∈ Z∗n. In this conditional probability distribution, α is uniformly
distributed over Z∗n, and β := αm is uniformly distributed over θ(±1,±1).
Let us consider each of these four possibilities:

• β = θ(1, 1) implies β + 1 = θ(2, 2), and so gcd(rep(β) + 1, n) = 1;

• β = θ(−1,−1) implies β+ 1 = θ(0, 0), and so gcd(rep(β) + 1, n) = n;

264 Probabilistic primality testing

• β = θ(−1, 1) implies β + 1 = θ(0, 2), and so gcd(rep(β) + 1, n) = p;

• β = θ(1,−1) implies β + 1 = θ(2, 0), and so gcd(rep(β) + 1, n) = q.

Thus, if β = θ(−1, 1) or β = θ(1,−1), which happens with probability 1/2,
then gcd(rep(β) + 1, n) splits n. Therefore, the overall probability that we
split n is at least 1/2.

We now present the algorithm in its full generality. We first introduce
some notation; namely, let λ(n) denote the exponent of Z∗n. If the prime
factorization of n is as in (10.5), then by the Chinese remainder theorem,
we have

λ(n) = lcm(λ(pe1
1), . . . , λ(per

r)).

Moreover, for any prime power pe, by Theorem 10.1, we have

λ(pe) =
{
pe−1(p− 1) if p 6= 2 or e ≤ 2,
2e−2 if p = 2 and e ≥ 3.

In particular, if m | n, then λ(m) | λ(n).
Now, returning to our factorization problem, we are given n and a non-

zero multiple f of λ(n), and want to factor n. We may as well assume that
n is odd; otherwise, we can pull out all the factors of 2, obtaining n′ such
that n = 2en′, where n′ is odd and f is a multiple of λ(n′), thus, reducing
to the odd case.

So now, assume n is odd and f is a multiple of λ(n). Assume that f is
of the form f = 2hm, where m is odd. Our factoring algorithm, which we
describe recursively, runs as follows.

if n is a prime power pe then
output e copies of p and return

generate a random, non-zero element α of Zn

d1 ← gcd(rep(α), n)
if d1 6= 1, then recursively factor d1 and n/d1 (using the same f),

and return
α← αm

for j ← 0 to h− 1 do
d2 ← gcd(rep(α) + 1, n)
if d2 /∈ {1, n}, then recursively factor d2 and n/d2

(using the same f), and return
α← α2

recursively factor n (using the same f)

It is clear that when the algorithm terminates, its output consists of the

10.6 Factoring and computing Euler’s phi function 265

list of all primes (including duplicates) dividing n, assuming the primality
test does not make a mistake.

To analyze the running time of the algorithm, assume that the prime
factorization of n is as in (10.5). By the Chinese remainder theorem, we
have a ring isomorphism

θ : Zp
e1
1
× · · · × Zper

r
→ Zn.

Let λ(pei
i) = mi2hi , where mi is odd, for i = 1, . . . , r, and let ` :=

max{h1, . . . , hr}. Note that since λ(n) | f , we have ` ≤ h.
Consider one execution of the body of the recursive algorithm. If n is

a prime power, this will be detected immediately, and the algorithm will
return. Here, even if we are using probabilistic primality test, such as the
Miller–Rabin test, that always says that a prime is a prime, the algorithm
will certainly halt. So assume that n is not a prime power, which means
that r ≥ 2. If the chosen value of α is not in Z∗n, then d1 will be a non-
trivial divisor of n. Otherwise, conditioning on the event that α ∈ Z∗n, the
distribution of α is uniform over Z∗n. Consider the value β := αm2`−1

.
We claim that with probability at least 1/2, gcd(rep(β) + 1, n) is a non-

trivial divisor of n. To prove this claim, let us write

β = θ(β1, . . . , βr),

where βi ∈ Z∗
p

ei
i

for i = 1, . . . , r. Note that for those i with hi < `, the m2`−1-
power map kills the group Z∗

p
ei
i

, while for those i with hi = `, the image of

Z∗
p

ei
i

under the m2`−1-power map is {±1}. Without loss of generality, assume

that the indices i such that hi = ` are numbered 1, . . . , r′, where 1 ≤ r′ ≤ r.
The values βi for i = 1, . . . , r′ are uniformly and independently distributed
over {±1}, while for all i > r′, βi = 1. Thus, the value of gcd(rep(β) + 1, n)
is the product of all prime powers pei

i , with βi = −1, which will be non-
trivial unless either (1) all the βi are 1, or (2) r′ = r and all the βi are −1.
Consider two cases. First, if r′ < r, then only event (1) is possible, and this
occurs with probability 2−r′ ≤ 1/2. Second, if r′ = r, then each of events
(1) and (2) occurs with probability 2−r, and so the probability that either
occurs is 2−r+1 ≤ 1/2. That proves the claim.

From the claim, it follows that with probability at least 1/2, we will obtain
a non-trivial divisor d2 of n when j = `− 1 (if not before).

So we have shown that with probability at least 1/2, one execution of the
body will succeed in splitting n into non-trivial factors. After at most log2 n

such successes, we will have completely factored n. Therefore, the expected
number of recursive invocations of the algorithm is O(len(n)).

266 Probabilistic primality testing

Exercise 10.14. Suppose you are given an integer n of the form n = pq,
where p and q are distinct, `-bit primes, with p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are themselves prime. Suppose that you are also given an
integer m such that gcd(m, p′q′) 6= 1. Show how to efficiently factor n.

Exercise 10.15. Suppose there is a probabilistic algorithm A that takes
as input an integer n of the form n = pq, where p and q are distinct, `-bit
primes, with p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are prime. The
algorithm also takes as input α, β ∈ (Z∗n)2. It outputs either “failure,” or
integers x, y, not both zero, such that αxβy = 1. Furthermore, assume that
A runs in strict polynomial time, and that for all n of the above form, and
for randomly chosen α, β ∈ (Z∗n)2, A succeeds in finding x, y as above with
probability ε(n). Here, the probability is taken over the random choice of α
and β, as well as the random choices made during the execution of A. Show
how to use A to construct another probabilistic algorithm A′ that takes as
input n as above, runs in expected polynomial time, and that satisfies the
following property:

if ε(n) ≥ 0.001, then A′ factors n with probability at least
0.999.

10.7 Notes

The Miller–Rabin test is due to Miller [63] and Rabin [75]. The paper by
Miller defined the set L′n, but did not give a probabilistic analysis. Rather,
Miller showed that under a generalization of the Riemann hypothesis, for
composite n, the least positive integer a such that [a]n ∈ Zn \ L′n is at
most O((log n)2), thus giving rise to a deterministic primality test whose
correctness depends on the above unproved hypothesis. The later paper by
Rabin re-interprets Miller’s result in the context of probabilistic algorithms.

Bach [10] gives an explicit version of Miller’s result, showing that under
the same assumptions, the least positive integer a such that [a]n ∈ Zn \ L′n
is at most 2(log n)2; more generally, Bach shows the following holds under
a generalization of the Riemann hypothesis:

For any positive integer n, and any proper subgroup G (Z∗n,
the least positive integer a such that [a]n ∈ Zn \G is at most
2(log n)2, and the least positive integer b such that [b]n ∈ Z∗n\G
is at most 3(log n)2.

The first efficient probabilistic primality test was invented by Solovay and
Strassen [94] (their paper was actually submitted for publication in 1974).

10.7 Notes 267

Later, in Chapter 22, we shall discuss a recently discovered, deterministic,
polynomial-time (though not very practical) primality test, whose analysis
does not rely on any unproved hypothesis.

Carmichael numbers are named after R. D. Carmichael, who was the
first to discuss them, in work published in the early 20th century. Al-
ford, Granville, and Pomerance [7] proved that there are infinitely many
Carmichael numbers.

Exercise 10.6 is based on Lehmann [55].
Theorem 10.7, as well as the table of values just below it, are from Kim

and Pomerance [53]. In fact, these bounds hold for the weaker test based
on Ln.

Our analysis in §10.4.2 is loosely based on a similar analysis in §4.1 of
Maurer [61]. Theorem 10.8 and its generalization in Exercise 10.11 are
certainly not the best results possible in this area. The general goal of
“sieve theory” is to prove useful upper and lower bounds for quantities like
Rf (x, y) that hold when y is as large as possible with respect to x. For
example, using a technique known as Brun’s pure sieve, one can show that
for log y <

√
log x, there exist β and β′, both of absolute value at most 1,

such that

Rf (x, y) = (1 + βe−
√

log x)x
∏
p≤y

(1− ωf (p)/p) + β′
√
x.

Thus, this gives us very sharp estimates for Rf (x, y) when x tends to infinity,
and y is bounded by any fixed polynomial in log x. For a proof of this
result, see §2.2 of Halberstam and Richert [42] (the result itself is stated
as equation 2.16). Brun’s pure sieve is really just the first non-trivial sieve
result, developed in the early 20th century; even stronger results, extending
the useful range of y (but with larger error terms), have subsequently been
proved.

Theorem 10.9, as well as the table of values immediately below it, are
from Damg̊ard, Landrock, and Pomerance [32].

The algorithm presented in §10.6 for factoring an integer given a multiple
of φ(n) (or, for that matter, λ(n)) is essentially due to Miller [63]. However,
just as for his primality test, Miller presents his algorithm as a deterministic
algorithm, which he analyzes under a generalization of the Riemann hypoth-
esis. The probabilistic version of Miller’s factoring algorithm appears to be
“folklore.”

